SinCos Formulas: Trigonometric identities are essential for students to comprehend because it is a crucial part of the syllabus as well.The sides of a right-angled triangle serve as the foundation for sin and cos formulae. Along with the tan function, the fundamental trigonometric functions in trigonometry are sin and cos.
Cos A + Cos B, an important cosine function identity in trigonometry, is used to find the sum of values of cosine function for angles A and B. It is one of the sum to product formulas used to represent the sum of cosine function for angles A and B into their product form. The result for Cos A + Cos B is given as 2 cos ½ A + B cos ½ A - B. Let us understand the Cos A + Cos B formula and its proof in detail using solved examples. What is Cos A + Cos B Identity in Trigonometry? The trigonometric identity Cos A + Cos B is used to represent the sum of the cosine of angles A and B, Cos A + Cos B in the product form using the compound angles A + B and A - B. We will study the Cos A + Cos B formula in detail in the following sections. Cos A + Cos B Sum to Product Formula The Cos A + Cos B sum to product formula in trigonometry for angles A and B is given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Cos A + Cos B Formula We can give the proof of Cos A + Cos B trigonometric formula using the expansion of cosA + B and cosA - B formula. As we stated in the previous section, we write Cos A + Cos B = 2 cos ½ A + B cos ½ A - B. Let us assume that α + β = A and α - β = B. We know, using trigonometric identities, 2α = A + B ⇒ α = A + B/2 2β = A - B ⇒ β = A - B/2 ½ [cosα + β + cosα - β] = cos α cos β, for any angles α and β. [cosα + β + cosα - β] = 2 cos α cos β ⇒ Cos A + Cos B = 2 cos ½A + B cos ½A - B Hence, proved. How to Apply Cos A + Cos B? We can apply the Cos A + Cos B formula as a sum to the product identity to make the calculation easier when it is difficult to find the cosine of given angles. Let us understand its application using the example of cos 60º + cos 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, cos 60º + cos 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Cos A + Cos B, given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, we get, Cos 60º + Cos 30º = 2 cos ½ 60º + 30º cos ½ 60º - 30º = 2 cos 45º cos 15º = 2 1/√2 √3 + 1/2√2 = √3 + 1/2. Also, we know that cos 60º + cos 30º = 1/2 + √3/2 = 1 + √3/2. Hence, the result is verified. ☛ Related Topics on Cos A + Cos B Trigonometric Chart sin cos tan Law of Sines Law of Cosines Trigonometric Functions Let us have a look at a few examples to understand the concept of cos A + cos B better. FAQs on Cos A + Cos B What is Cos A + Cos B in Trigonometry? Cos A + Cos B is an identity or trigonometric formula, used in representing the sum of cosine of angles A and B, Cos A + Cos B in the product form using the compound angles A + B and A - B. Here, A and B are angles. What is the Formula of Cos A + Cos B? Cos A + Cos B formula, for two angles A and B, can be given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B. Here, A + B and A - B are compound angles. What is the Expansion of Cos A + Cos B in Trigonometry? The expansion of Cos A + Cos B formula is given as, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, where A and B are any given angles. How to Prove the Expansion of Cos A + Cos B Formula? The expansion of Cos A + Cos B, given as Cos A + Cos B = 2 cos ½ A + B cos ½ A - B, can be proved using the 2 cos α cos β product identity in trigonometry. Click here to check the detailed proof of the formula. How to Use Cos A + Cos B Formula? To use Cos A + Cos B formula in a given expression, compare the expansion, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B with given expression and substitute the values of angles A and B. What is the Application of Cos A + Cos B Formula? Cos A + Cos B formula can be applied to represent the sum of cosine of angles A and B in the product form of cosine of A + B and cosine of A - B, using the formula, Cos A + Cos B = 2 cos ½ A + B cos ½ A - B.
Rumusrumus trigonometri SMA kelas 11 serta contoh soal dan Pembahasan. Rumus-rumus trigonometri yang akan kita bahas adalah rumus-rumus pada materi pelajaran matematika minat kelas 11 yang meliputi:
In trigonometry, cosa + b is one of the important trigonometric identities involving compound angle. It is one of the trigonometry formulas and is used to find the value of the cosine trigonometric function for the sum of angles. cos a + b is equal to cos a cos b - sin a sin b. This expansion helps in representing the value of cos trig function of a compound angle in terms of sine and cosine trigonometric functions. Let us understand the cosa+b identity and its proof in detail in the following sections. 1. What is Cosa + b? 2. Cosa + bFormula 3. Proof of Cosa + b Formula 4. How to Apply Cosa + b? 5. FAQs on Cosa + b What is Cosa + b? Cosa+b is the trigonometry identity for compound angles given in the form of a sum of two angles. It says cos a + b = cos a cos b - sin a sin b. It is therefore applied when the angle for which the value of the cosine function is to be calculated is given in the form of the sum of angles. The angle a+b here represents the compound angle. Cosa + b Formula Cosa + b formula is generally referred to as the cosine addition formula in trigonometry. The cosa+b formula can be given as, cos a + b = cos a cos b - sin a sin b where a and b are the given angles. Proof of Cosa + b Formula The verification of the expansion of cosa+b formula can be done geometrically. Let us see the stepwise derivation of the formula for the cosine trigonometric function of the sum of two angles in this section. In the geometrical proof of cosa+b formula, let us initially assume that 'a', 'b', and a+b are positive acute angles, such that a+b < 90. But this formula, in general, stands true for any positive or negative value of a and b. To prove cos a + b = cos a cos b - sin a sin b Construction Assume a rotating line OX and let us rotate it about O in the anti-clockwise direction till it reaches Y. OX makes out an acute angle with Y given as, ∠XOY = a, from starting position to its final position. Again, this line rotates further in the same direction and starting from the position OY till it reaches Z, thus making out an acute angle given as, ∠YOZ = b. ∠XOZ = a + b < 90°. On the bounding line of the compound angle a + b take a point P on OZ, and draw PQ and PR perpendiculars to OX and OY respectively. Again, from R draw perpendiculars RS and RT upon OX and PQ respectively. Now, from the right-angled triangle PQO we get, cos a + b = OQ/OP = OS - QS/OP = OS/OP - QS/OP = OS/OP - TR/OP = OS/OR ∙ OR/OP + TR/PR ∙ PR/OP = cos a cos b - sin ∠TPR sin b = cos a cos b - sin a sin b, since we know, ∠TPR = a Therefore, cos a + b = cos a cos b - sin a sin b. How to Apply Cosa + b? The expansion of cosa + b can be used to find the value of the cosine trigonometric function for angles that can be represented as the sum of standard angles in trigonometry. We can follow the steps given below to learn to apply cosa + b identity. Let us evaluate cos30º + 60º to understand this better. Step 1 Compare the cosa + b expression with the given expression to identify the angles 'a' and 'b'. Here, a = 30º and b = 60º. Step 2 We know, cos a + b = cos a cos b - sin a sin b. ⇒ cos30º + 60º = cos 30ºcos 60º - sin 30ºsin 60º since, sin 60º = √3/2, sin 30º = 1/2, cos 60º = 1/2, cos 30º = √3/2 ⇒ cos30º + 60º = √3/21/2 - 1/2√3/2 = √3/4 - √3/4 = 0 Also, we know that cos 90º = 0. Therefore the result is verified. ☛Related Topics Law of Sines sin cos tan Trigonometric Chart Trigonometric Functions Let us have a look a few solved examples to understand cosa+b formula better. FAQs on Cosa + b What is Cosa + b Formula? Cosa+b is one of the important trigonometric identities also called cosine addition formula in trigonometry. Cosa+b can be given as, cos a + b = cos a cos b - sin a sin b, where 'a' and 'b' are angles. What is the Formula of Cos a Plus b? The cosa+b formula is used to express the cos compound angle formula in terms of sine and cosine of individual angles. Cosa+b formula in trigonometry can be given as, cos a + b = cos a cos b - sin a sin b. What is Expansion of Cosa + b The expansion of cos a plus b formula is given as, cos a + b = cos a cos b - sin a sin b. Here, a and b are the measures of angles. How to Prove Cos a + b Formula? The proof of cosa + b formula can be given using the geometrical construction method. We initially assume that 'a', 'b', and a+b are positive acute angles, such that a+b < 90. Click here to understand the stepwise method to derive cos a plus b formula. What are the Applications of Cos a + b Formula? Cosa+b can be used to find the value of cosine function for angles that can be represented as the sum of standard or simpler angles. Thus, it makes the deduction easier while calculating the values of trig functions. It can also be used in finding the expansion of other double and multiple angle formulas. How to Find the Value of Cos 15º Using Cos a Plus b Identity. The value of cos 15º using a + b identity can be calculated by first writing it as cos[45º+-30º] and then applying cosa+b identity and using the trigonometric table. ⇒cos[45º+-30º] = cos 45ºcos-30º - sin-30ºsin 45º = 1/√2√3/2 - -1/21/√2 = √3/2√2 + 1/2√2 = √3+1/2√2 = √6+√2/4 How to Find Cosa + b + c using Cos a + b? We can express cosa+b+c as cosa+b+c and expand using cosa+b and sina+b formula as, cosa+b+c = cosa+b.cos c - sina+b.sin c = cos c.cos a cos b - sin a sin b - sin c.sin a cos b + cos a sin b = cos a cos b cos c - sin a sin b cos c - sin a cos b sin c - cos a sin b sin c.
RumusCos Ab Wednesday, 31 December 1969 Dan persamaan ini tidak dapat diselesaiakan jika. Cosa b cos a cos b sin a sin b 3.
Sin a cos b is an important trigonometric identity that is used to solve complicated problems in trigonometry. Sin a cos b is used to obtain the product of the sine function of angle a and cosine function of angle b. It can be obtained from angle sum and angle difference identities of the sine function. sin a cos b formula is written as 1/2[sina+b + sina-b]. In this article, we will explore the sin a cos b formula, its proof, and learn its application to solve various trigonometric problems with the help of solved examples. 1. What is Sin a Cos b Identity? 2. Proof of Sin a Cos b Formula 3. Application of Sin a Cos b Identity 4. FAQs on Sin a Cos b What is Sin a Cos b Identity? Sin a cos b is a trigonometric identity used to solve various problems in trigonometry. Sin a cos b is equal to half the sum of sine of the sum of angles a and b, and sine of difference of angles a and b. Mathematically, it is written as sin a cos b = 1/2[sina + b + sina - b], that is, it can be derived using the trigonometric identities sin a + b and sina - b. sin a cos b formula can be applied when the sum and difference of angles a and b are known, or when two angles a and b are known. Sin a Cos b Formula The formula for sin a cos b is given by, sin a cos b = 1/2[sina + b + sina - b]. The formula for sin a cos b can be applied when the compound angles a + b and a - b are known, or when values of angles a and b are known. Proof of Sin a Cos b Formula Now that we know the formula of sin a cos b, which is sin a cos b = 1/2[sina + b + sina - b], we will derive this formula using the trigonometric formulas and identities. Sin a cos b formula can be derived using the angle sum and angle difference formulas of the sine function. We will use the following trigonometric formulas sin a + b = sin a cos b + cos a sin b - 1 sin a - b = sin a cos b - cos a sin b - 2 Adding equations 1 and 2, we have sin a + b + sin a - b = sin a cos b + cos a sin b + sin a cos b - cos a sin b From 1 and 2 ⇒ sin a + b + sin a - b = sin a cos b + cos a sin b + sin a cos b - cos a sin b ⇒ sin a + b + sin a - b = sin a cos b + sin a cos b + cos a sin b - cos a sin b ⇒ sin a + b + sin a - b = 2 sin a cos b + 0 ⇒ sin a + b + sin a - b = 2 sin a cos b ⇒ sin a cos b = 1/2 [sin a + b + sin a - b] Hence, we have obtained the sin a cos b formula using the sin a + b and sin a - b identities. Application of Sin a Cos b Identity Since we have derived the sin a cos b formula, now we will learn how to apply the formula to solve simple trigonometric and integration problems. We will consider some examples based on sin a cos b identity and solve them step-wise. Let us understand the application of the sin a cos b formula by following the given steps Example 1 Express the trigonometric function sin 7x cos 3x as a sum of the sine function. Step 1 We will use the sin a cos b formula sin a cos b = 1/2 [sin a + b + sin a - b]. Identify the values of a and b in the formula. We have sin 7x cos 3x, here a = 7x, b = 3x. Step 2 Substitute the values of a and b in the formula sin a cos b = 1/2 [sin a + b + sin a - b] sin 7x cos 3x = 1/2 [sin 7x + 3x + sin 7x - 3x] ⇒ sin 7x cos 3x = 1/2 [sin 10x + sin 4x] ⇒ sin 7x cos 3x = 1/2 sin 10x + 1/2 sin 4x Hence, we can write sin 7x cos 3x as 1/2 sin 10x + 1/2 sin 4x as a sum of sine function. Example 2 Evaluate the integral ∫sin 2x cos 4x dx using the sin a cos b formula. Step 1 First, we will express sin 2x cos 4x as a sum of sine function using the formula sin a cos b = sin a cos b = 1/2 [sin a + b + sin a - b]. Identify a and b in sin 2x cos 4x. We have a = 2x, b = 4x. Step 2 Substitute the values of a and b in the formula sin a cos b = 1/2 [sin a + b + sin a - b] sin 2x cos 4x = 1/2 [sin 2x + 4x + sin 2x - 4x] ⇒ sin 2x cos 4x = 1/2 [sin 6x + sin -2x] ⇒ sin 2x cos 4x = 1/2 sin 6x - 1/2 sin 2x [Because sin-a = -sin a] Step 3 Substitute sin 2x cos 4x = 1/2 sin 6x - 1/2 sin 2x into the integral ∫sin 2x cos 4x dx. ∫sin 2x cos 4x dx = ∫ [1/2 sin 6x - 1/2 sin 2x] dx ⇒ ∫sin 2x cos 4x dx = 1/2 ∫sin6x dx - 1/2 ∫sin2x dx ⇒ ∫sin 2x cos 4x dx = 1/2[-cos6x]/6 - 1/2[-cos2x]/2 + C ⇒ ∫sin 2x cos 4x dx = -1/12 cos 6x + 1/4 cos 2x + C Hence, we have solved the integral ∫sin 2x cos 4x dx using sin a cos b formula and is equal to -1/12 cos 6x + 1/4 cos 2x + C. Important Notes on Sin a Cos b sin a cos b = 1/2[sina+b + sina-b] sin a cos b formula is applied when angles a and b are known, or when the sum and difference of angles a and b are known. sin a cos b formula is used to solve simple and complex trigonometric problems. Sin a cos b is equal to half the sum of sine of the sum of angles a and b, and sine of difference of angles a and b. Related Topics on Sin a Cos b sin a sin b cos a cos b sin of 2 pi cos 2x FAQs on Sin a Cos b What is Sin a Cos b in Trigonometry? Sin a cos b is an important trigonometric identity that is used to solve complicated problems in trigonometry given by sin a cos b = 1/2 [sin a + b + sin a - b] What is the Formula of Sin a Cos b? The formula of sin a cos b is sin a cos b = 1/2 [sin a + b + sin a - b] What is the Formula of 2 sin a cos b? The formula for 2 sin a cos b is given by, 2 sin a cos b = sin a + b + sin a - b Find the Exact Value of sin a cos b when a = 90° and b = 180°. Substitute a = 90° and b = 180° in sin a cos b = 1/2 [sin a + b + sin a - b]. sin 90° cos 180° = 1/2 [sin 90° + 180° + sin 90° - 180°] = 1/2 [sin 270° + sin-90°] = 1/2-1-1 = -1. Hence, sin a cos b = -1 when a = 90° and b = 180° How to Find sin a cos b formula? Sin a Cos b formula can be calculated using sina + b and sin a - b trigonometric identities. When is sin a cos b equal to 1/2 sin 2a? sin a cos b is equal to 1/2 sin 2a when a = b. When a = b in sin a cos b = 1/2 [sin a + b + sin a - b], we have sin a cos b = 1/2 [sin a + a + sin a - a] = 1/2 [sin 2a + 0] = 1/2 sin 2a. How to Prove sin a cos b Identity? Sin a cos b formula can be proved using the angle sum and angle difference formulas of the sine function. What is the Expansion of Sin a Cos b? The expansion of sin a cos b is given by sin a cos b = 1/2 [sin a + b + sin a - b]. What is the Difference Between Sin a Cos b Formula and Cos a Sin b Formula? Sin a cos b formula is the sum of sin a + b and sin a - b trigonometric identities, whereas cos a sin b formula is the difference of sin a + b and sin a - b trigonometric identities, that is, sin a cos b = 1/2 [sin a + b + sin a - b] and cos a sin b = 1/2 [sin a + b - sin a - b].
andadd vertically. The last terms in each line will cancel: sin (+ β) + sin (− β) = 2 sin cos β.Therefore, on exchanging sides, 2 sin cos β = sin (+ β) + sin (− β), . so that. sin cos β = ½[sin (+ β) + sin (− β)].. This is the identity ).. Formula (b) is derived in exactly the same manner, only instead of adding, subtract sin (− β) from sin (+ β).
Cos A - Cos B, an important identity in trigonometry, is used to find the difference of values of cosine function for angles A and B. It is one of the difference to product formulas used to represent the difference of cosine function for angles A and B into their product form. The result for Cos A - Cos B is given as 2 sin ½ A + B sin ½ B - A. Let us understand the Cos A - Cos B formula and its proof in detail using solved examples. 1. What is Cos A - Cos B Identity in Trigonometry? 2. Cos A - Cos B Difference to Product Formula 3. Proof of Cos A - Cos B Formula 4. How to Apply Cos A - Cos B Formula? 5. FAQs on Cos A - Cos B What is Cos A - Cos B Identity in Trigonometry? The trigonometric identity Cos A - Cos B is used to represent the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. We will study the Cos A - Cos B formula in detail in the following sections. Cos A - Cos B Difference to Product Formula The Cos A - Cos B difference to product formula in trigonometry for angles A and B is given as, Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B or Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Cos A - Cos B Formula We can give the proof of Cos A - Cos B trigonometric formula using the expansion of cosA + B and cosA - B formula. As we stated in the previous section, we write Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Let us assume two compound angles A and B, given as A = X + Y and B = X - Y, ⇒ Solving, we get, X = A + B/2 and Y = A - B/2 We know, cosX + Y = cos X cos Y - sin X sin Y cosX - Y = cos X cos Y + sin X sin Y cosX + Y - cosX - Y = -2 sin X sin Y ⇒ Cos A - Cos B = - 2 sin ½ A + B sin ½ A - B ⇒ Cos A - Cos B = 2 sin ½ A + B sin ½ B - A Hence, proved. How to Apply Cos A - Cos B Formula? We can apply the Cos A - Cos B formula as a difference to the product identity. Let us understand its application using an example of cos 60º - cos 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, cos 60º - cos 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Cos A - Cos B, given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, we get, Cos 60º - Cos 30º = 2 sin ½ 60º + 30º sin ½ 30º - 60º = - 2 sin 45º sin 15º = - 2 1/√2 √3 - 1/2√2 = 1 - √3/2. Also, we know that Cos 60º - Cos 30º = 1/2 - √3/2 = 1- √3/2. Hence, the result is verified. ☛ Related Topics on Cos A + Cos B Trigonometric Chart Law of Cosines sin cos tan Law of Sines Trigonometric Functions Let us have a look at a few examples to understand the concept of cos A - cos B better. FAQs on Cos A - Cos B What is Cos A - Cos B in Trigonometry? Cos A - Cos B is an identity or trigonometric formula, used in representing the difference of cosine of angles A and B, Cos A - Cos B in the product form using the compound angles A + B and A - B. Here, A and B are angles. How to Use Cos A - Cos B Formula? To use Cos A - Cos B formula in a given expression, compare the expansion, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A with given expression and substitute the values of angles A and B. What is the Formula of Cos A - Cos B? Cos A - Cos B formula, for two angles A and B, can be given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A. Here, A + B and A - B are compound angles. What is the Expansion of Cos A - Cos B in Trigonometry? The expansion of Cos A - Cos B formula is given as, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, where A and B are any given angles. How to Prove the Expansion of Cos A - Cos B Formula? The expansion of Cos A - Cos B, given as Cos A - Cos B = 2 sin ½ A + B sin ½ B - A, can be proved using the 2 sin X sin Y product identity in trigonometry. Click here to check the detailed proof of the formula. What is the Application of Cos A - Cos B Formula? Cos A - Cos B formula can be applied to represent the difference of cosine of angles A and B in the product form of sine of A + B and sine of A - B, using the formula, Cos A - Cos B = 2 sin ½ A + B sin ½ B - A.
Cosb = br / a maka br = a cos b. Sin a = cr/b → cr = b. Source: rifandy23.blogspot.com. Sin (a + b) = sin a cos b + cos a sin b. Mendapatkan rumus sin( a b) sin cos a.sin b dengan langkah berikut : Source: www.marthamatika.com. Dengan menggunakan rumus sin (a + b), untuk a = b maka diperoleh: Sin 120 o sin 180 o 60 o sin 60 o 3 sama
Hallo Gangs Apa kabar? Semoga kita semua selalu ada dalam lindungan-Nya. Amin. Pada kesempatan kali ini kita akan belajar tentang rumus sinus, kosinus dan tangen. Kita tidak akan sekedar mengetahui rumus-rumusnya namun kita juga akan melatih kemampuan otak kita dengan contoh-contoh soal yang akan di berikan. Okeee Gengs langsung saja yaaa Sebelum kita melangkah pada latihan soal, akan diberikan beberapa rumus yang akan kita gunakan untuk menjawab soal-soal. Perhatikan aturan-aturan berikut ini Aturan Sinus Aturan Cosinus Aturan trigonometri pada segitiga Nahhhhhh sekarang kita akan masuk pada latihan soal!!! CONTOH 1 Soal Pada △ABC diketahui bahwa sudut A = 30°, a = 6 dan b = 10. Tentukanlah nilai dari Sin B. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Rumus di atas bisa kita tuliskan ke dalam a sin B = b sin A 6 sin B = 10 sin 30° 6 sin B = 10 x ½ sin B = 5/6 CONTOH 2 Soal Pada segitiga PQR diketahui besar sudut P = 60°, sudut R = 45° dan panjang p = 8√3. Tentukanlah panjang sisi r. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut p sin R = r sin P 8√3 sin 45° = r sin 60° 8√3 x 1/2√2 = r 1/2√3 4√6 = r x 1/2√3 r = 4√6 ÷ ½√3 = 8√2 CONTOH 3 Soal Apabila diketahi △ABC dimana sudut A = 75°, sudut B = 60° dan panjang sisi c = 20. Tentukan panjang sisi b. Jawab Sebelumnya, apabila kita perhatikan baik-baik soal di atas dimana sudut yang diketahui adalah A dan B sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang ditannyaka. Dari penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut C-nya. besar sudut C = 180° – [75°+ 60°] = 45° Nahhhhhh setelah kita tentukan besar sudut C maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 20 sin 60° b ½ √2 = 20. ½√3 b ½ √2 = 10 √3 b = 10 √3 ÷ ½ √2 = 10√6 CONTOH 4 Soal Apabila diketahui suatu △ABC memiliki panjang sisi a = 12, besar sudut A = 60° dan sudut C = 45°, maka berapakah panjang sisi c? Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin C = c sin A 12 sin 45° = c sin 60° 12 x ½√2 = c x ½√3 6√2 = c x ½√3 c = 6√2 ÷ ½√3 = 4√6 CONTOH 5 Soal Jika diketahui suatu △ABC memiliki panjang sisi c = 12√2cm, besar sudut A = 105° dan besar sudut C = 45°, maka berapakah panjang sisi b? Jawab Pada soal nomor 5 ini kasusnya sama dengan soal nomo 3 dimana sudut yang diketahui adalah A dan C sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut B-nya, sebagai berikut ini. besar sudut B = 180° – [105° + 45°] = 30° Nahhhhhh setelah kita tentukan besar sudut B maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 12√2 sin 60° b x ½√2 = 12√2 x ½√3 b x ½√2 = 6√6 b = 12√3 CONTOH 6 Soal Tentukan panjang sisi b apabila diketahui besar sudut A = 60°, besar sudut B = 45° dan panjang sisi a = 6√3 pada △ABC. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 6√3 x sin 45° = b sin 60° 6√3 x ½√2 = b x ½√3 3√6 = b x ½√3 b = 3√6 ÷ ½√3 = 6√2 CONTOH 7 Soal Tentukan △ABC dengan panjang sisi a = 4, b = 10 dan sin B = ½. Berapakah nilai dari cos A. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut cos² A = 1 – sin² A = 1 – ⅕² = 24/25 cos A = ⅖√6 CONTOH 8 Soal Sebuah △ABC memiliki panjang c = 4 , a = 6 dan b = 8 . Tentukan nilai dari cos C. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos C = [a² + b² – c² ] ÷ [ = [6² + 8² – 4² ] ÷ = [36 + 64 – 16 ] ÷ 96 = 84 ÷ 96 CONTOH 9 Soal Sebuah △ABC memiliki panjang sisi a = 3, c = 8 dan besar sudut B = 60°. Tentukan panjang sisi b. Jawab b² = a² + c² – 2ac cos B = 3² + 8² – cos 60° = 9 + 64 – 48 ½ = 73 -24 = 49 Sehingga b = √49 = 7 CONTOH 10 Soal Diketahui △ABC dengan panjang sisi c = 9, b = 8cm dan a = 7. Tentukan nilai dari sin A. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos A x 2bc = b² + c² – a² cos A x [ = 9² + 8² – 7² 144 cos A = 81 + 64 – 49 cos A = 96/144 = 2/3 karena yang ditanyakan adalah sin A maka kita akan mencarinya dengan berpatokan pada nilai cos A yang telah kita peroleh, sebagai berikut sin² A = 1 – cos²A = 1 – 2/3² = 1 – 4-/9 = 5/9 sin A = √5/9 = ⅓√5 CONTOH 11 Soal Pada suatu segitiga ABC diketahui panjang sisi a = 3, b = 5 dan c = 7. Tentukanlah nilai tan C. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C 7² = 3² + 5² – cos C 49 = 9 + 25 – 30 cos C 30 cos C = -15 cos C = – 15/30 = -1/2 Sehingga C = 120 Selanjutnya, kita tentukan nilai tan C. tan C = tan 120° = tan 180° – 60° = – tan 60° = – √3 CONTOH 12 Soal Diketahui sebuah segitiga ABC dengan panjang sisi a = 6, b = 8 dan besar sudut C = 60°. Tentukanlah panjang sisi c. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C c² = 6² + 8² – 60° c² = 36 + 64 – 96 . ½ c² = 100 – 48 = 52 Sehingga akan diperoleh sebagai berikut c = √52 = 2√13 CONTOH 13 Soal Pada △ABC diketahui besar sudut C = 60°, panjang sisi c = 12 dan panjang sisi a = 15. Tentukan luas segitiga ABC. Jawab Dengan menggunakan aturan triginimetri pada segitiga, diperoleh sebagai berikut. Luas △ABC = ½ x c x a x sin C = ½ x 12 x 15 x sin 60° = ½ x 12 x 15 x ½√3 = 45√3 CONTOH 14 Soal Pada △ABC diketahui a = 2√7cm, b = 4cm dan c = 6cm. Maka tentukan nilai sin A. Jawab Dengan menggunakan aturan cosinus, diperoleh hasil sebagai berikut cos A x 2bc = b² + c² – a² cos A x = 4² + 6² – 2√7² 48 cos A = 16 + 36 – 28 = 24 cos A =24/28 = ½ maka didapat besar sudut A = 60° Sehingga sin 60° = ½√3 CONTOH 15 Soal Misalkan sebuah segitiga ABC sama sisi memiliki panjang 8, maka Berapakah luas segitiga tersebut. Jawab Kita misalkan bahwa segitiga sama sisi tersebut memiliki besar sudut yang sama yaitu 45° dan semua sisi memiliki panjang yang sama sehingga luasnya didapat seperti ini Luas △ABC = ½ x s x s x sin α = ½ x s x s x sin 45 = ½ x 12 x 12 x ½√2 = 36√2 CONTOH 16 Soal Jika diketahui △ABC memiliki besar sudut A = 65°, B = 55°, panjang sisi b = 6 dan panjang sisi a = 8, maka tentukan luas segitiga tersebut adalah Jawab Karena sin C-nya belum diketahui, maka kita cari dahulu nilai sin C. Besar sudut C = 180° – [65° + 55°] = 60° Sesudah mendapatkan nilai sin C maka selanjutnya kita mengerjakan berdasarkan aturan segitiga pada trigonometri sebagai berikut Luas △ABC = ½ x a x b x sin 60° = ½ x 6 x 8 x ½√3 = 12√3 Demikian cintoh-contoh soalnya. Semoga bermanfaat
Berdasarkanrumus aturan cosinus di atas, maka di dapatkan rumus untuk menghitung besar sudutnya : Supaya kamu lebih paham, kerjakan contoh soal di bawah ini yuk Squad! Segitiga ABC diketahui panjang sisi a = 5 cm, panjang sisi c = 6 cm dan besar sudut B = 60º.
Sin A + Sin B, an important identity in trigonometry, is used to find the sum of values of sine function for angles A and B. It is one of the sum to product formulas used to represent the sum of sine function for angles A and B into their product form. The result for sin A + sin B is given as 2 sin ½ A + B cos ½ A - B. Let us understand the sin A + sin B formula and its proof in detail using solved examples. 1. What is Sin A + Sin B Identity in Trigonometry? 2. Sin A + Sin B Sum to Product Formula 3. Proof of Sin A + Sin B Formula 4. How to Apply Sin A + Sin B? 5. FAQs on Sin A + Sin B What is SinA + SinB Identity in Trigonometry? The trigonometric identity sinA + sinB is used to represent the sum of sine of angles A and B, sin A + sin B in the product form using the compound angles A + B and A - B. It says sin A + sin B = 2 sin [A + B/2] cWe will study the sin A + sin B formula in detail in the following sections. Sin A + Sin B Sum to Product Formula The sin A + sin B sum to product formula in trigonometry for angles A and B is given as, Sin A + Sin B = 2 sin [½ A + B] cos [½ A - B] Here, A and B are angles, and A + B and A - B are their compound angles. Proof of SinA + SinB Formula We can give the proof of sin A + sin B formula sin A + sin B = 2 sin ½ A + B cos ½ A - B using the expansion of sinA + B and sinA - B formula. We know, using trigonometric identities, ½ [sinα + β + sinα - β] = sin α cos β, for any angles α and β. From this, [sinα + β + sinα - β] = 2 sin α cos β ... 1 Let us assume that α + β = A and α - β = B. ⇒ 2α = A + B ⇒ α = A + B/2 ⇒ 2β = A - B ⇒ β = A - B/2 Substituting all these values in 1 ⇒ sinA + sinB = 2 sin ½A + B cos ½A - B Hence, proved. How to Apply Sin A + Sin B? We can apply the sin A + sin B formula as a sum to the product identity. Let us understand its application using an example of sin 60º + sin 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, sin 60º + sin 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula sin A + sin B, given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, we get, Sin 60º + Sin 30º = 2 sin ½ 60º + 30º cos ½ 60º - 30º = 2 sin 45º cos 15º = 2 1/√2 √3 + 1/2√2 = √3 + 1/2. Also, we know that sin 60º + sin 30º = √3/2 + 1/2 = √3 + 1/2 from trig table. Hence, the result is verified. ☛ Related Topics Trigonometric Chart Trigonometric Functions sin cos tan Law of Sines Let us have a look at a few examples to understand the concept of sin A + sin B better. FAQs on Sin A + Sin B What is the Value of Sin A Plus Sin B? Sin A plus Sin B is an identity or trigonometric formula, used in representing the sum of sine of angles A and B, Sin A + Sin B in the product form using the compound angles A + B and A - B. Here, A and B are angles. What is the Formula of SinA + SinB? SinA + SinB formula, for two angles A and B, can be given as sinA + sinB = 2 sin ½ A + B cos ½ A - B. Here, A + B and A - B are compound angles. What is the Product Form of Sin A + Sin B in Trigonometry? The product form of sin A + sin b formula is given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, where A and B are any given angles. How to Prove the Expansion of SinA + SinB Formula? The expansion of sin A + sin B, given as sinA + sinB = 2 sin ½ A + B cos ½ A - B, can be proved using the 2 sin α cos β product identity in trigonometry. Click here to check the detailed proof of the formula. How to Use Sin A + Sin B Formula? To use sin A + sin B identity in a given expression, compare the sin a + sin b formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B with given expression and substitute the values of angles A and B. What is the Application of SinA + SinB Formula? SinA + SinB formula can be applied to represent the sum of sine of angles A and B in the product form of sine of A + B and cosine of A - B, using the formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B.
1 Rumus Sinus Sudut Ganda Dengan menggunakan rumus sin (A + B), untuk A = B maka diperoleh: sin 2A = sin (A + B) = sin A cos A + cos A sin A = 2 sin A cos A Rumus: Untuk lebih jelasnya, perhatikan contoh soal berikut ini. Contoh soal: Diketahui sin A = - 5/13 , di mana A di kuadran III. Dengan menggunakan rumus sudut ganda, hitunglah sin 2A
Sum / Difference of Angles Formulas. 1. cosA + B = cos A cos B – sin A sin B 2. cosA – B = cos A cos B + sin A sin B 3. sinA + B = sin A cos B + cos A sin B 4. sinA – B = sin A cos B – cos A sin B 5. tanA + B = [ tan A + tan B ] / [ 1 – tan A tan B] 6. tanA – B = [ tan A – tan B ] / [ 1 + tan A tan B] Sum / Difference of Trigonometric Functions Formulas. 7. sin A + sin B = 2 sin [ A + B / 2 ] cos [ A – B / 2 ] 8. sin A – sin B = 2 cos [ A + B / 2 ] sin [ A – B / 2 ] 9. cos A + cos B = 2 cos [ A + B / 2 ] cos [ A – B / 2 ] 10. cos A – cos B = – 2 sin [ A + B / 2 ] sin [ A – B / 2 ] Product of Trigonometric Functions Formulas. 11. 2 sin A cos B = sin A + B + sin A – B 12. 2 cos A sin B = sin A + B – sin A – B 13. 2 cos A cos B = cos A + B + cos A – B 14. 2 sin A sin B = – cos A + B + cos A – B Multiple Angles Formulas. 15. sin 2A = 2 sin A cos A 16. cos 2A = cos 2 A – sin 2 A = 2 cos 2 A – 1 = 1 – 2 sin 2 A 17. sin 3A = 3 sin A – 4 sin 3 A 18. cos 3A = 4 cos 3 A – 3 cos A Power Reducing Formulas. 19. sin 2 A = 1/2 [ 1 – cos 2A ] 19. cos 2 A = 1/2 [ 1 + cos 2A ]
NwX2l. e1a574rkcg.pages.dev/55e1a574rkcg.pages.dev/185e1a574rkcg.pages.dev/221e1a574rkcg.pages.dev/139e1a574rkcg.pages.dev/365e1a574rkcg.pages.dev/174e1a574rkcg.pages.dev/232e1a574rkcg.pages.dev/51e1a574rkcg.pages.dev/325
rumus sin a cos b